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Modeling of Fiber Microbuckling in Composite 
Materials 

Takeaki Nadabe, Nobuo Takeda 
 

Abstract— In this study, a model of fiber microbuckling in composite materials is proposed for the purpose of material strength analysis. 
Firstly the fiber microbuckling is numerically simulated using finite element method in order to understand how this deformation 
phenomenon appears in the material. Then the equations expressing deformation of composite materials are compiled, and the 
correspondence between the equations and the actual deformation phenomenon in composite materials are considered. It is indicated that 
onset of arbitrariness in solution of equations expressing the deformation of composite materials is closely related with the initiation of the 
fiber microbuckling in composite materials and thus the material strength of composite materials. 

Index Terms— Fiber microbuckling, material strength, nonlinear deformation, composite materials  

——————————      —————————— 

1 INTRODUCTION                                                                     
OMPOSITE materials commonly have complex internal 
structures including fibers, matrix, interfaces and inter-
laminar regions, and when precise evaluation of fracture 

strength of the material is conducted, the internal fracture pro-
cess in the materials is necessary to be taken into account in 
the numerical analysis [1]. In recent years, composite materials 
are being increasingly used in several industrial fields, and the 
precise evaluation of mechanical response of the material un-
der various loading condition and environmental condition 
increases the necessity in design and improvement of indus-
trial products [2]. Compressive failure is one of the typical 
failure modes in fiber reinforced composite materials [3], and 
fracture strength in compressive failure often becomes one of 
the limiting factors at the design phase of structural elements 
[4]. Not only uniaxial compressive strength but also compres-
sive strength at around open holes and post-impact compres-
sive strength in the materials are related to the fundamental 
compressive strength of the materials, and improvement of 
compressive strength would be related with the increase of the 
light weight potential of the materials. In this study, a model 
of fiber microbuckling in composite materials is proposed. 
Firstly the fiber microbuckling is numerically simulated using 
finite element method to understand how this deformation 
phenomenon appears in the material, and then the model of 
this phenomenon is considered. 

2 NUMERICAL SIMULATION OF FIBER MICROBUCKLING 
2.1 Numerical Model 
In order to investigate the physical mechanism of fiber mi- 

 
 

crobuckling in composite materials, the numerical simulation 
of fiber microbuckling is conducted. Finite element method is 
used to simulate the fiber microbuckling. Fig. 1 shows the 
numerical model of this analysis. The white and gray elements 
in Fig. 1 represent fibers and matrix, respectively. The thick-
ness of the ply in y-direction is 0.60 mm. The length in x-
direction is 1.0 mm, and the thickness in z-direction is 100 mm. 
The diameter of each fiber is set to 3.5 μm, and the interval of 
fibers is 20.0 μm. The fiber volume fraction of the materials is 
set to 17.5 %. Each fiber and matrix is modeled by two-
dimensional plate elements. The one fiber placed at the center 
has the initial misalignment as shown in the figure. The initial 
misalignment of the fiber is introduced using the sine func-
tion. The x coordinate of each node is placed regularly at the 
interval of 5.0 μm, and the y coordinate of each node is calcu-
lated using the sine function. The other fibers are modeled as 
the straight lines and the fiber axial direction is parallel to the 
x-direction. 

Due to the atomic structure in the inside of the fibers, the 
fibers commonly have the different material property in be-
tween fiber axial and transverse directions. Here, the fibers are 
modeled by the transversely isotropic elastic material.  Table 1 
shows the material property of the fibers. Carbon fiber AS4 
(Hexcel Corp.) is assumed [5]. Matrix is modeled by isotropic 
elastic-plastic material. Commonly the compressive failure of 
composite materials is affected by the nonlinear stress-strain 
relation of matrix, thus in this analysis the nonlinear stress-
strain curve of matrix shown in Fig. 2 (hardening curve N) is 
applied, and the nonlinear finite element analysis is conduct-
ed. Table 2 shows the material property of matrix. Epoxy resin 
3501-6 (Hercules Chemical Company, Inc.) is assumed [5]. The 
quasi-static and room temperature environment are assumed 
in the analysis. 
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Since the geometrical nonlinearity commonly affects the 
buckling phenomena of the materials, the geometrical nonlin-
ear effect is incorporated in the analysis. The incremental 
analysis in the finite element analysis is conducted by the arc-
length method. In the initial increment, the average applied 
strain to the material in x-direction is set to 0.002 %. The anal-
ysis is conducted until the average applied strain 2.0 %. The 
domain decomposition method is applied to conduct the par-
allel computing in the numerical calculation. The authors pro-
duced fortran program for this analysis, and the analysis is 
conducted using this program. 

2.2 Simulated Results and Discussions 
Fig. 3 and 4 show the simulated results of deformation and 
stress distribution of the material, respectively. Simulated res- 
 

 
 

 

ults show that in the initial state of the loading, the stress con-
centration occurs in the material around the initial misalign-
ment of fiber, and when the applied load is increased, local 
areas of matrix around the stress concentration start to yield, 
and deformation is locally increased. At one moment of the 
loading, a large deformation occurs within a narrow band, 
and a band of localized deformation develops rapidly. This 
band of localized deformation passes across the misalignment 
part of center fiber. As shown in the figures, fibers cause bend-
ing deformation, and fiber direction is largely rotated. Ma-
trix causes shear deformation, and the shape of the ele-
ments is close to rhombus shape which is rectangle shape 
in initial state. After the yielding of matrix, the elastic-
plastic tangent shear stiffness of matrix significantly reduc-
es, and the shear strain rapidly increases. Then the shear  
 

 

 

TABLE 1 
MATERIAL PROPERTY OF FIBER [5] 

Elastic modulus in fiber axial direction 225 GPa 
Elastic modulus in transverse direction 15 GPa 
In-plane Poisson’s ratio 0.2  
In-plane shear modulus 15 GPa 
Transverse shear modulus 7 GPa 

TABLE 2 
MATERIAL PROPERTY OF MATRIX [5] 

Elastic modulus 4.2 GPa 
Poisson’s ratio 0.34  
Yield stress 90 MPa 

  
Fig. 3 Simulated results of deformation.   

Fig. 2. Stress-strain curve of matrix. 

 
Fig. 1. Numerical model of composite material. 
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deformation of this part of matrix increases, and due to the 
shear deformation of the part, the band of localized defor-
mation is formed. The reduction of tangent shear stiffness of 
matrix after yielding is the essential factor in the onset of the 
microbuckling of the fibers. 

3 MODELING OF FIBER MICROBUCKLING 
3.1 Equations Expressing Deformation of Composite 

Materials 
Here, the equations expressing deformation of composite ma-
terials are compiled. The equations consist of motion equation 
and constitutive equation. The motion equation is represented 
as the following, 
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where 0ρ  is density, t  is time, iu  is displacement, jX  is co-
ordinate at reference configuration, ijP  is the first Piola-
Kirchhoff stress and if  is external force. The nonlinear stress-
strain relation of composite materials is represented by the 
nonlinear deformation theory shown by Tohgo et al. [7]. 

εCσ dd comp=  

( )( ){ } KCSCCCC 11 −+−−= mmffmcomp V  (2) 

( ) ( ){ } ffmmff VV CCSCCK ++−−= 1  
where σd  is stress rate, εd  is strain rate, compC , fC  and mC  
are constitutive tensors of composites, fibers and matrix, re-
spectively, fV  is fiber volume fraction and S  is Eshelby ten-
sor. Next, the effect of geometrical nonlinearity during the 
material deformation is considered. Here the constitutive ten-
sor in spacial description is defined in the relation between the 
second Piola-Kirchhoff stress and the right Cauchy-Green de-
formation tensor. 
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where spa
abcdC  is constitutive tensor in spacial description, abS  is 

the second Piola-Kirchhoff stress and CG
cdC  is the right Cauchy-

Green deformation tensor. The constitutive tensor in material 
description is represented by the constitutive tensor in spacial 
description as follows, 

spa
abcdldkcjbia

mat
ijkl CFFFFJC 12 −=   

spa
abcd

d

l

c

k

b

j

a

i C
X
x

X
x

X
x

X
x

J ∂
∂

∂
∂

∂

∂

∂
∂

=
12  (4) 

where mat
ijklC  is constitutive tensor in material description, iaF  

is deformation gradient, ijFJ det=  is Jacobian and ix  is coor-
dinate at present configuration. Cauchy stress is represented 
by the second Piola-Kirchhoff stress, deformation gradient and 
Jacobian as follows,  

jlklikij FSFJ 1−=σ  (5) 

jlklikjlklikij FSFJFSFJ  11 −− +=σ   

jlklikjlklik FSFJJFSFJ 11 −− −+   (6)  
where ijσ  is Cauchy stress and ijσ  is the material time deriva-
tive of Cauchy stress. Here, the time derivative of deformation  
gradient and Jacobian is  

kjikij FLF = , iiLJ =  (7) 
where ikL  is velocity gradient. Then 
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Therefore 
llijjkikkjikkl

mat
ijklij LLLDC σσσσ −++=  (11) 

This coinsides with the formulation of Truesdell rate of Cau-
chy stress. There, here the formulation of finite deformation is 

 
Fig. 4 Simulated results of stress distribution. 
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based on Truesdell rate of Cauchy stress. Then the rate of the 
first Piola-Kirchhoff stress is represented as follows, 
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where ikδ  is Kronecker delta. From (1) and (12), a set of equa-
tions expressing deformation of composite materials is ob-
tained.  
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3.2 Arbitrariness Appearing in Solution of Equations in 
Deformation of Composite Materials 

Equations (13) and (14) are unified to one differential equation.  
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where tensor ijklA  is 

( )iklm
mat
imkl

m

j
ijkl C

x
X

JA δσ+
∂

∂
=  (16) 

Equation (15) plays a role of governing equation in the defor-
mation of composite materials. When the reference configura-
tion is taken at the moment of the present time, and in the 
place where the external force doesn’t act, (15) becomes as 
follows, 
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Here, we conduct the transformation of coordinate system for 
this equation. Firstly each variable is transformed as the fol-
lowing in the transformation of coordinate system. 
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where ax′  is the coordinate system after the transformation. 
Then (17) is transformed as follows,  
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Commonly the governing equations for natural phenomena 
do not change their form in the coordinate transformation. 
Next, when the deformation is locally isotropic in 2’ and 3’ 
direction, 2x′∂∂ and 3x′∂∂  are equal to zero, and when the de-
formation is quasi-static, t∂∂ becomes equal to zero, which 
corresponds with the case when inertia term is infinitesimal,  
then Eq. (19) becomes as follows, 
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Here, the eigenvalue problem of the tensor 11caA′  is considered. 
Using the eigenvalue λ′  and the eigenvector cv′ of the tensor 

11caA′ , the eigenvalue problem is represented as 
ccca vvA ′′=′′ λ11  (21) 

When the tensor 11caA′  has zero eigenvalues, (21) becomes as 
follows, 

011 =′′ cca vA  (22) 
Multiplying the arbitrary function ( )1x′′φ , 

( ) 0111 =′′′′ xvA cca φ  (23) 
Taking the partial differenciation of 1x′ , 
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This equation means that ( )1xvu cc ′′′=′ φ  is one of the solution of 
(20). Since ( )1xvu cc ′′′=′ φ  is the solution of (20) for arbitrary func-
tion ( )1x′′φ , (20) have multiple solutions, or the arbitrariness 
appears in the solution of (20). This case causes when the ten-
sor 11caA′  has zero eigenvalues. When the tensor 11caA′  has zero 
eigenvalues, the determinant of 11caA′  becomes zero, 

( ) 0det 11 =′ caA  (25) 
From (18), the tensor 11caA′  is represented by the original coor-
dinate system of tensor ijklA . 

lc

k

ji

a
ijklca x

x
x
x

x
x

x
xAA

∂
′∂

′∂
∂

∂
′∂

∂
′∂

=′ 11
11  (26) 

Here, we introduce two tensors jn  and aiJ  which express the 
coordinate transformation. 
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Then (25) becomes as follows, 
( ) ( )1

11 detdet −=′ ckailjijklca JJnnAA   

( ) ( ) ( ) 0detdetdet 1 =⋅⋅= −
ckailjijkl JJnnA  (28) 

Since ( ) 0det ≠aiJ , 
( ) 0det =ljijkl nnA  (29) 

As the conclusion of this analysis, when (29) is satisfied, the 
arbitrariness appears in the solution of (20) which is a specific 
case of the governing equations for the deformation of compo-
site materials. Equation (29) is considered as the initiation 
condition of arbitrariness in the solution of the equations for 
the deformation of composite materials. This is interesting 
because in structural mechanics it is well recognized that the 
buckling of the structures is represented by a condition where 
the determinant of the stiffness matrix of the structures is 
equal to zero. 

[ ] 0det =K  (30) 
where [ ]K is the stiffness matrix. There is a significant similari-
ty in between (29) and (30). In the case of (30), at the time 
when the equation has equality, the structural instability or 
the buckling phenomena appear in the structures, and the ma-
terial and geometrical nonlinearity of the stiffness matrix play 
important roles in these instability or the buckling. In the case 
of (29), when the equation has equality, the material instability 
or the microbuckling phenomena appear in the materials, and 
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the material nonlinearity including the effect of matrix nonlin-
ear stress-strain relation and geometrical nonlinearity includ-
ing the effect of fiber misalignment play important roles in 
these instability or the microbuckling. In addition, from (16), 
(29) also becomes as follows, 

( ) 0det =+ ljikjllj
mat
ijkl nnnnC δσ  (31) 

The first term of this equation depends on the constitutive 
tensor of the material, including the elastic and plastic proper-
ty of the material. It is also related with the material nonlinear 
effect. The second term of the equation depends on the multi-
axial stresses. It is related with the geometrical nonlinear effect. 
The equation indicates that the appearance of arbitrariness is 
related with the material property and the multi-axial stresses. 
The angle of microbuckling is able to affect through the varia-
ble jn , but the width of the band of the microbuckling possi-
bly does not affect the arbitrariness condition. It is also notable 
that due to the nonlinearity including the material and geo-
metrical nonlinearity, the arbitrariness is able to appear, it in-
dicates that the fact that the governing equations for the de-
formation of composite materials are nonlinear equations is 
essential for the appearance of arbitrariness. Considering the 
actual deformation, the resultant displacement in the arbitrar-
iness seems to have the following formula, 

( )cxHvu Lcc −′′=′ 1  (32) 
where the function ( )1xH L ′  is the Heaviside function. Since 
theoretically arbitrary displacement is allowed, the width of 
the band of microbuckling is able to relate with the initial mis-
alignment shape in the material around the area of initiation of 
the microbucling. When we put the tensor ljijkl nnA  as ika , the 
determinant of (29) is explicitly represented in two-
dimensional as the following, 

0det 21122211 =−= aaaaaik  (33) 
In fiber reinforced composite materials, commonly the elastic 
modulus in fiber axial direction has much higher value than 
the value of transverse direction and stress value, and because 
of this, matC1111 has much higher value than the other components 
of constitutive tensor mat

ijklC and the components of stress tensor 
ijσ , that is ij

mat
ijkl

mat CC σ,1111 >>  ( )matmat
ijkl CC 1111≠ . Since only 1111A  

and 11a  includes matC1111 , ijklAA >>1111  ( )1111AAijkl ≠  and ikaa >>11  
( )11aaik ≠ . Thus the equation becomes, 
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Here the vector jn is represented using an angle β  as follows, 
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Then 22a is represented as follows, 
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From this equation, 
( ) βσσ 2

222222212111 tan++≈− matmat CC   

                 ( ) βσ tan2 1222212122 +++ matmat CC  (37) 

11σ−  is the value of applied compressive stress to the material 
in longitudinal direction. When this applied stress reaches the 
value of right hand side of (37), the determinant of (29) be-
comes equal to zero, and the arbitrariness is allowed to appear, 
which means the instability appears in the material and mi-
crobuckling is able to occur in the actual situations. The value 
of 11σ−  at the time of being equal to right hand side of (37) is 
considered as the critical compressive stress crσ  or the buck-
ling stress in microbuckling. 

( ) βσσ 2
2222222121 tan++≈ matmat

cr CC   

                      ( ) βσ tan2 1222212122 +++ matmat CC  (38) 
Using elastic-plastic tangent shear modulus ep

LTG , transverse 
tangent modulus ep

TE , in-plane Poisson’s ratio 12ν  and 21ν  and 
shear stress 12τ , the equation becomes as follows, 
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                   ( ) βτ tan2 1222212122 +++ matmat CC  (39) 
In the case of uniaxial compression and if matC2122  and matC2221  are 
close to zero, the compressive strength is approximately repre-
sented as follows, 
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Equation (40) corresponds with the expression given by Budi-
ansky [8]. It is indicated that the arbitrariness condition in 
equations of deformation of composite materials is closely 
related with the initiation condition of compressive failure of 
composite materials.  

3.3 Numerical Analysis for Fiber Microbuckling Stress 
Using Arbitrariness Condition 

Here the numerical analysis is conducted for the actual mate-
rial property using the arbitrariness condition. For this pur-
pose, incremental analysis is conducted. As the initial condi-
tion, stress is set to zero. Then the stress is incrementally ap-
plied. In each increment, total stress is calculated and matrix 
plastic state is updated. Constitutive tensors of fiber, matrix, 
and composites are calculated, and the determinant in (29) is 
evaluated. When the determinant in (29) becomes approxi-
mately equal to zero, the arbitrariness is assumed to occur, 
and the microbuckling is assumed to initiate. At this increment, 
the calculation is finished, and the applied compressive stress 
at this time is recorded as the material strength or the mi-
crobuckling stress. For transverse failure modes, failure crite-
ria presented by Pinho et al. [9] are applied. The material 
property of CFRP AS4/3501-6 [5] is assumed. For strain hard-
ening curve of matrix, two kinds of hardening curves M and N 
shown in Fig. 2 are applied and the results are compared. The 
analysis is repeated with changing each one parameter, and 
the results for the relationship between material strength and 
each one parameter are obtained.  

Fig. 5(a) shows the analysis results for the relationship be-
tween compressive strength and the multi-axial stresses. The 
shear stress reduces the compressive strength and this relation  
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is approximately represented as the linear relation. Tensile and 
high compressive transverse stress also reduces the compres-
sive strength, while under the small compressive transverse 
stress, the compressive strength is almost constant. In addition, 
the dependency of the multi-axial stresses changes with the 
change of the strain hardening curve. Fig. 5(b) shows the anal-
ysis results for the relationship between compressive strength 
and the constituent material property. The matrix yield stress 
and fiber volume fraction increases the compressive strength 
and these relations are also close to the linear relation. The 
initial fiber misalignment reduces the compressive strength 
and this relation is close to the inversely proportional relation. 
The dependency of the material strength for each parameter 
almost agrees with the experimental results shown in the pre-
vious investigations [3]. 

4 CONCLUSION 
A model of fiber microbuckling in composite materials is in-
vestigated. There exists a state where the arbitrariness appears 
in the solution of equations expressing the deformation of 
composite materials, and the condition for onset of the arbi-
trariness is closely related with the initiation of the fiber mi-
crobuckling and the material strength. 
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(b) Relationship with material property 
Figure 5: Numerical results of compressive strength of the material. 

 
 (a) Relationship with multi-axial stress 
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